

Case Studies of 5MW CHP Systems

Jan Berry Keith Kline

Oak Ridge National Laboratory

Case Studies:

- » Austin Energy
- » Ft. Bragg Army Base

0.3-5 MW Energy Systems for District Applications

Burns and McDonnell (Austin)

5 MW turbine generator integrated with 2,500
RT of waste-heat absorption cooling

Honeywell Laboratories (Ft. Bragg)

5 MW turbine generator integrated with 1,000 RT waste-heat chiller and HRSG

Gas Technology Institute Team

Engine generator (290 kW to 770 kW) integrated with absorption chillers

70-300kW Energy Systems for Building Applications

United Technologies/Capstone Team

 Four 60 kW microturbines integrated with a 110 RT PureComfort waste-heat fired chiller

NiSource Team

–70-100 kW microturbine integrated with waste-heat fired absorption refrigeration

Systems Integrate On-site Energy and Thermally-Activated Technology

Distributed Generation Technology

Thermally-Activated Technology

Solid Oxide Fuel Cell

600°F

Phosphoric Acid Fuel Cell

I.C. Engine

PEM Fuel Cell

180°F

Single-Effect **Absorption**

Desiccant **Technology**

Triple-Effect

Absorption

OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

DOE/ORNL Projects target market sectors

- Burns & McDonnell
- United Technology

Chilled water revenue drives project economics

EXCHANGER

OPTIONAL

COOLING

COMPRESSOR

OPTIONAL

Austin—Exhaust heat produces chilled water

Ft. Bragg—Exhaust heat produces steam and chilled water

Packaged CHP advance systems controls

- Optimize system performance on:
 - Cost savings,
 - Energy reliability for critical uses
 - Compliance with emissions permit,
- multiple operating scenarios

Design tips: interface requirements defined

http://www.bchp.org/prof-design-require.html

DER/CHP System installed to meet site-specific needs

- Austin Energy Burns & McDonnell
 - Reduce energy costs
 - Reduce air emissions
- Ft. Bragg Honeywell
 - Improve power reliability and security
 - Isolate facilities from off-site generation with onsite power, heating, and cooling
 - Increase energy choices—minimize fuel supply pricing risks